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A Breakthrough Idea in Risk Measure 
Validation – Is the Way Paved for an Effective 
Expected Shortfall Backtest?*

Gyöngyi Bugár

This research note is a kind of “call for attention” to recent developments in 
backtesting financial risk measures. This topic is relevant in relation to the regulatory 
monitoring of the performance of internal risk models used by banks in determining 
the minimum capital requirements for trading book portfolios. Backtesting is 
a process for checking the validity of risk estimation models. In his seminal work, 
Gneiting (2011) has proven that a prominent risk measure, Expected Shortfall (ES), 
lacks a property called elicitability. This finding has triggered a huge controversy on 
the issue of whether ES is backtestable at all. Due to the significant contribution of 
Acerbi and Székely (2017, 2019) among others, the above-mentioned debate can 
be adequately and convincingly closed because there is a (re)solution. In particular, 
one can arrive at the conclusion that, building on its joint elicitability with Value-at-
Risk (VaR), it is possible to introduce a so-called ridge backtest for ES. In fact, there 
is still an open question as to when and how the regulatory authorities will (re)act.
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1. Introduction

The recently published, new Basel III standards (BCBS 2016) provide a revised 
framework for determining the capital charge for market risk in internal models 
with a shift from VaR to ES (Bugár − Ratting 2016). This is a risk measure for better 
capturing tail risk which has some more favourable properties such as coherence 
(see Artzner et al. 1999).
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However, as Gneiting (2011) demonstrated, ES has a serious disadvantage compared 
to VaR because it is not elicitable. This has led some to conclude that this risk 
measure is not backtestable at all (see for instance, Carver 2013). Others such as 
Tasche (2014) and Acerbi − Székely (2014) were definitely convinced that this is not 
a real problem. The latter authors emphasised that elicitability has not even been 
exploited in the backtests of VaR. The lack of elicitability in the case of ES has proven 
to be a challenge and has exploded into a lively debate in the literature, especially 
between financial mathematicians and statisticians focused on the question of 
whether ES is a proper risk measure to substitute VaR in banking regulation. One 
theoretically prominent applicant for this purpose might be the α-expectile which 
is both elicitable and coherent (for α ≥ 0.5).1 Its practical implementation, however, 
is excluded because it lacks any economic meaning. Despite ES having established 
a foothold in Basel III and being used as the proposed, new measure in determining 
the capital charge for trading book positions, the Basel Committee still supports 
VaR for backtesting purposes.

In light of the recent developments in backtesting methodology, there is an urgent 
need to revise the current system. The present work attempts to highlight the ideas 
and results that serve as a basis for this far-reaching conclusion.

2. Value-at-Risk versus Expected Shortfall

According to McNeil et al. (2015), the most modern approach in quantitative risk 
management is to identify the risk of a portfolio as a statistical quantity describing 
the return (loss) distribution of the portfolio over some predetermined time horizon. 
Examples include the variance proposed by Markowitz (1952), VaR as well as ES, 
the latter ones are the two measures adopted by banking regulation.

VaR is a quantile-based risk measure (Dowd−Blake 2006), i.e. the negative α-quantile 
of the return (X) distribution at a given significance level α

 VaRα X( )= −qα X( )  (1)

It follows from eq. (1)

 VaRα X( )= −F← α( ), 0<α <1  (2)

1  See e.g. Ziegel (2016) for a proof.
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F←(α) above is the generalised inverse of the distribution function F(x) for the 
random variable X (see Embrechts et al. 1999), i.e.

 F← α( )= inf x∈! F x( )≥α{ },  (3)

where inf{.} refers to the infimum, namely the greatest lower bound of the set 
indicated in brackets.2

The VaR methodology has been adopted in the form of the so-called standard 
model for regulation in the banking sector since 1993 with the purpose of assessing 
regulatory capital in order to cover market risk-related losses. The dynamic progress 
of the financial sector coupled with high-speed product innovations raises more 
and more problems and challenges for regulators to cope with. Among other things, 
the subprime crisis and its escalation into a global financial crisis underlined the 
disadvantages of VaR as a risk metric. During that period of financial turbulence, 
banks’ losses far exceeded the regulatory capital requirements “calibrated” using 
VaR.

The unreliability of VaR as a risk measure has been strongly articulated by 
researchers as well as risk experts since the start of 2000s. A number of studies 
were published highlighting the “weaknesses” of VaR. Furthermore, in 2002 the 
Journal of Banking and Finance devoted a special issue to the problems in risk 
measurement theory and their applications in risk management. Szegö (2002) even 
used the provocative title “No more VaR (this is not a typo)” for an editorial note. 
However, the “distress signals” by representatives of risk measurement theory were 
not taken seriously by regulators in the banking sector until the outbreak of the 
subprime crisis in 2007.

The risk measure also known as Conditional Value-at-Risk (CVaR) and Tail-VaR was 
eventually adopted as Expected Shortfall (ES) in the Basel regulation.3 At a given 
significance level α (over some predetermined time horizon) ES is a conditional 
expectation, namely the expected value of loss (negative return) exceeding VaR. 
According to Acerbi – Tasche (2002), it can be formulated as follows.

 ESα X( )=VaRα X( )+ 1
α
E X +VaRα( )– 4 (4)

2  If the α-quantile is single-valued then VaRα can be determined as the negative inverse of the distribution 
function at α, namely VaRα(X) = –F –1(α).

3  For details see BCBS (2016) and Bugár – Ratting (2016)
4  The meaning of (a)– = –min(a,0). It is called the negative part of a.
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For continuous return distributions, eq. (4) takes the form as below.

 ESα X( )= 1
α

VaRp X( )dp
0

α

∫  (5)

ES has very attractive theoretical and empirical properties compared to VaR. It 
accounts for losses beyond VaR, which is especially important in case of fat-tail 
distributions. It is also a coherent measure of risk complying with the coherence-
axioms proposed by Artzner et al. (1999). By contrast, VaR is not coherent because 
it lacks subadditivity. Therefore, it can occur that the risk of a portfolio measured 
by VaR can be higher than the sum of the risk of its components. Furthermore, 
ES has two favourable technical properties. It is continuous with respect to the 
confidence level and convex with respect to the control variables, the latter 
being relevant in portfolio optimisation. In order to optimise within the mean-ES 
framework, as shown by Rockafellar − Uryasev (2000),5 one must solve a simple 
linear programming problem. This makes ES very appealing in asset allocation.

Besides the lack of elicitability, there are other deficiencies with ES. Among these, 
as shown by Csóka et al. (2007), it is worth mentioning that in evaluating the risk 
of a portfolio from the perspective of general equilibrium theory, spectral risk 
measures (the generalisations of ES) do not take into account the relation of the 
examined portfolio to the market portfolio. As a consequence, the application of 
ES as a risk measure can lead to under- or overestimation of portfolio risk.

3. Model validation

In general, the term model validation refers to the process of verifying whether 
a model provides reliable predictions. In the risk industry and financial regulation, 
the method of model validation is referred to as backtesting. As expressed by Acerbi 
− Székely (2017), backtesting is a “reality check for its [i.e. the model’s] output”. 
In other words, it is a technique which is used to evaluate the accuracy of the 
forecasting method by comparing ex-ante predictions of some statistic to ex-post 
realisations of the random variable it refers to. The challenge is that neither the 
real value of the statistic nor its distribution can be revealed. The only thing which 
can be found out ex-post is just the realised value which can be regarded as a single 
random draw (an element of a sample).

5  They used the name CVaR for ES.
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In particular, in risk measurement theory the statistic considered is a point estimator 
of a risk measure, for example that of VaR or ES given by eq. (2) and (4), respectively. 
Return (X) is the corresponding random variable and F(x) denotes the unknown 
distribution function of X. By relying on a particular model, namely on a certain 
method or algorithm, with which the risk measure applied is estimated, our task is 
to evaluate the predictive performance based on a time series (sample) of realised 
returns (xt) and compare them to the risk measure predictions (yt). The latter means 
the estimated value of the relevant risk measure given at time t – 1 for time point 
t. This process generates another challenge, especially in the case of ES backtests. 
As the real value of ES cannot be observed, risk measure predictions must be 
tested against return outcomes. This can be referred to as “apples-with-oranges” 
comparison (see Acerbi − Székely 2019).

There are two important types of model validation. In the case of absolute 
validation, the predictive performance of a given predetermined model is evaluated. 
This is the traditional approach aimed at backtesting a single internal model by 
financial regulators. For that purpose, the corresponding methodology is hypothesis 
testing.

The other type of model validation is relative validation or model selection as 
termed by Acerbi − Székely (2014). This is relevant when the aim is to rank different 
models based on their forecasting ability. In such a situation, the property called 
elicitability can prove to be very beneficial.

4. Elicitability and backtestability

4.1. The relevance of elicitability in backtesting
Elicitable statistics possess the property that they minimise the expected value of 
a scoring function. The role of the scoring function is to quantify the discrepancy 
between the forecasted and realised value from the distribution. The scoring 
function must be strictly consistent, which means that the scoring function has 
a finite mean and its expected value has a unique minimum. A formal definition of 
elicitability can be given as follows (see McNeil et al. 2015).

Let R:X→R(X) be a risk measure defined on the distribution function F(x) of the 
random return X. The risk measure R can also be interpreted as a statistic T (or 
a statistical functional) defined on F, so that T:F→T(F). The relationship above can 
be expressed as R(X) = T(F).
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A statistic T of a risk measure is elicitable if there exists a strictly consistent scoring 
function S :!×!→ [0,∞)  such that for any random return X with finite mean

 T F( )= argminy∈!E S y,x( )( )  (6)

where E(.) denotes expected value. Please, note that the values of the scoring 
function must be non-negative.6

As is well-known in forecasting theory, the mean is elicitable, and the appropriate 
scoring function is S(y,x) = (y – x)2. It can be shown that VaR is elicitable for strictly 
increasing distribution functions.7 ES, however, as Gneiting (2011) has pointed out 
is not elicitable. It is worth mentioning that Bellini − Bignozzi (2015) have shown the 
same from a standpoint of financial risk measurement theory by characterising all 
the elicitable risk measures. Variance, which was introduced by Markowitz (1952) 
as a risk measure, is also not elicitable (Lambert et al. 2008). The above mentioned 
examples are summarised in Table 1. In the case of elicitable statistics, the relevant 
(canonical) scoring function is also given.

Table 1
Examples of elicitable and non-elicitable statistics

Statistic Elicitable? Scoring function

Mean Yes (y – x)2

Variance No Does not exist

VaRα Yes (1 – α)(y – x){x < y} + α(y – x){x ≥ y} *

ESα No Does not exist

Note: * This can also be expressed with absolute value: │1{x ≤ y} – α ││y – x│.
Source: Author’s work based on Acerbi – Székely (2017)

The lack of elicitability in the case of ES has proven to be a challenge leading to 
some flawed conclusions. In the meantime, it has been confirmed that this property 
is only relevant in relative model validation (see e.g. Davis 2014, Acerbi − Székely 
2014, Fissler et al. 2015). Therefore, one can draw the conclusion that this property 
has nothing to do with absolute model validation.

The importance of elicitability in backtesting stems from the fact that it makes 
possible to evaluate predictions (yt) given by different risk estimation models relying 
only on the realisations of the random variable, namely a sequence of realised 

6  For further reference on the properties of scoring functions and elicitable risk measures, see Bugár (2019).
7  See e. g. McNeil et al. (2015) for a proof.
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returns (xt). Indeed, if a risk measure is elicitable, the competing models can be 
ranked by computing the mean score over a certain period of time (T).

 s = 1
T

S yt ,xt( )
t=1

T

 (7)

The competing models can be ranked based on the concept that a smaller mean 
score indicates a better forecasting model.

While backtesting has long been a practice in the financial industry and regulation, 
according to the best of our knowledge, its formal definition was only recently given 
in a valuable contribution by Acerbi − Székely (2017).

4.2. Defining backtestability
A statistic T of a risk measure is backtestable if there exists a backtest function 
Z :!×!→!  such that for any random return X with finite mean

 E Z y,x( )( )= 0  if and only if y =T F( )  (8)

A further requirement is that the backtest function Z above must be strictly 
increasing in the prediction y, that is

 E Z y1 ,X( )( )< E Z y2 ,X( )( ) if y1 < y2  (9)

It is remarkable that becktestability is defined with the intention of being capable 
of differentiating over- and underestimation. Indeed, positive values in eq. (8) 
indicate overestimation, while negative ones underestimation, respectively. The 
scoring functions do not possess such a directional property. It is also obvious that 
worse predictions are located farther away from zero.

Acerbi − Székely (2017) pointed out that becktestability implies elicitability with 
y-convex scoring function which can be determined as follows.

 S y,x( )= Z t ,x( )dt
y

∫  (10)

given that the integral above exists.

One real challenge, however, is that the elicitability of a risk measure proved to be 
a necessary condition of backtestability. This means that a non-elicitable statistic 
cannot be backtestable. As a special case, it follows that ES is not backtestable. At 
this point, the adversaries of ES might relax, but this is not the end of the story…
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On the other side, elicitability with a strictly y-convex and smooth scoring function 
(i.e. continuously differentiable with respect to y) implies backtestability. In this 
case, the backtest function can be identified as

 Z y,x( )= ∂y S y,x( )  (11)

Based on this there is a straightforward conclusion that VaR is backtestable (given 
that it may impose certain restrictions on the return distribution8). Table 2 shows 
some examples of backtestable and non-backtestable statistics, and for the former 
ones the relevant backtest function is also given.

Table 2
Examples of backtestable and non-backtestable statistics

Statistic Backtestable? Backtest function

Mean Yes y – x

Variance No Does not exist

VaRα Yes  (1 – α){x < y} – α{x > y} + c{x = y}*

ESα No Does not exist

Note: * The constant c above must be in the interval [–α,1 – α]. For details see Acerbi – Székely (2017), 
p. 10.
Source: Author’s work based on Acerbi – Székely (2017)

In analogy with the methodology of how elicitability can be exploited in model 
selection (relative model validation), one can apply the realised backtest function 
for ranking competing models by calculating the mean backtest value over 
a period T based on a sequence of risk measure predictions (yt) as well as realised  
returns (xt)

 z = 1
T

Z yt ,xt( )
t=1

T

 (12)

Unlike the test formulated by eq. (7), the test above is directional, so with a positive 
(negative) value it is able to detect the tendency for over-(under)estimation. It is 
also important to emphasise that similarly to the test given by eq. (7), it also cannot 
be used for absolute model validation. In this case, a backtesting procedure must be 
hypothesis testing, as mentioned earlier. In fact, the proper backtesting procedure 
for absolute model validation is proposed and described by Acerbi − Székely (2017).

8  See Acerbi – Székely (2017) for details.
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4.3. Sharpness of a backtest
According to the definition given by Acerbi – Székely (2017), a backtestable statistic 
T(F) admits a sharp backtest if the expected value of the backtest function depends 
only on the predicted (y) and the true value of the statistic [T(F)] 

 E Z y,X( )⎡⎣ ⎤⎦ =φ y,T F( )( )  (13)

where φ is strictly increasing in y and strictly decreasing in T(F).

As shown in Table 2, the backtest function of the mean is: Z(y,x) = y – x. Let m denote 
the prediction value and μ be the real value of the mean. Then E[Z(y,X)] = m – E(X) = 
m – μ, which proves that the backtest of the mean is sharp. VaR, by contrast, does 
not admit a sharp backtest.9

The existence of a sharp backtest is of key importance because it results in predicting 
the real (true) value of the given statistic. Furthermore, a sharp backtest can be 
regarded as a direct measure of prediction discrepancy as it indicates the difference 
between the predicted and real value.

5. Ridge backtesting as the solution to the debate

5.1. Formal definition of a ridge backtest
The concept of ridge backtesting was introduced by Acerbi − Székely (2017). It builds 
on a concept of higher order or joint elicitability (see Acerbi − Székely 2014, Fissler 
et al. 2015 and Fissler − Ziegel 2016).

The formal definition (see Acerbi − Székely 2017) can be given as follows. A statistic 
T2 admits a ridge backtest

 Z y2 ,y1 ,x( )= h y2( )−vS y1 ,x( )  (14)

if it can be expressed (up to a strictly monotonic function g :!→! ) as the 
minimum of the expected scoring function S of an elicitable auxiliary statistic T1 
such that

 
T2 F( )= g miny∈!E S y,X( )( )( )
T1 F( )= argminy∈!E S y,X( )( )  (15)

In (14), ν ∈ ±1{ }  is the sign of ′g  (the derivative of g) and h x( )≡ vg−1 y( ) .

9  See Acerbi – Székely (2019) for details.
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As can be seen from (14) in the case of a ridge backtest the prediction of an auxiliary 
elicitable variable is involved in the backtesting procedure of the intended (in 
itself non-backtestable) statistic. The latter coincides the attained minimum of the 
expected value of the former one’s scoring function.

5.2. Ridge backtest for the variance
As mentioned earlier, the variance does not comply with the requirements of 
a backtestable statistic, because it is not elicitable. However, there is a possibility 
to develop a ridge backtest utilising that the variance can be expressed as the 
minimum of the expected value of the mean’s scoring function. Indeed, in line 
with (15)

 
V =minm∈!E X −m( )2⎡

⎣
⎤
⎦

µ = argminm∈!E X −m( )2⎡
⎣

⎤
⎦

 (16)

It follows that the backtest function of the variance can be written as

 Z v,m,x( )= v − x −m( )2  (17)

V and μ above denote the real values of the variance and the mean, while ν and m 
stand for the predicted values, respectively.

The backtest of the variance is sharp up to a quadratic bias B(m) = (m – μ)2 which 
indicates its sensitivity to the accuracy in the prediction of the mean (see Acerbi 
− Székely 2019).

5.3. Ridge backtest for ES
Based on the representation given by Rockafellar – Uryasev (2002)

 
ESα =minν∈!E ν + 1

α
X +ν( )–

⎡
⎣⎢

⎤
⎦⎥

VaRα = argminν∈!E ν + 1
α

X +ν( )–
⎡
⎣⎢

⎤
⎦⎥

 (18)

Acerbi − Székely (2019) have shown that ES admits a ridge backtest with the 
corresponding backtest function as follows:

 Z e,v,x( )= e−v − 1
α

x +v( )–  (19)

where α is the given significance level, e and v denote the predicted values of ES 
and VaR, respectively. The test above can be applied both for model selection and 
absolute model validation.
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The expected value of the backtest function can be expressed as

 E Z e,v,x( )⎡⎣ ⎤⎦ = e−ESα −B v( )  (20)

It can be seen from eq. (20) that the ES backtest above is sharp up to the bias

 B v( )= E v + 1
α

X +v( )–
⎡
⎣⎢

⎤
⎦⎥
−ESα ≥ 0  (21)

which is positive for any v, and zero if the prediction of VaR is exact, i.e. v = VaRα. 
Acerbi − Székely (2019) demonstrate that for continuous return distributions the bias 
can be approximated as the quadratic function of the discrepancy in VaR prediction10

 B v( )≈ f −VaRα( )
2α

v −VaRα( )2  (22)

where f denotes the density function of the return distribution. The bias is tiny 
if the difference is small between the predicted and real value of VaR. It is also 
remarkable that B(v) has a prudential effect11 in a sense that non-accurate VaR 
prediction (a bad VaR estimate) increases the discrepancy between the predicted 
and real value of ES (see eq. (20)).

In order to illustrate the relative size of the bias given in (22), we considered four 
distributions: the standard normal and Student’s t for three different degrees of 
freedom.12 Based on the calculations shown in Table 3, the relative size of the bias, 
i.e. B(v)/│ES│ as the function of the (relative) error in the VaR prediction (v – VaR)/v) 
is shown in Figure 1. In calculating VaR and ES, as a significance level, α = 2.5 per 
cent has been applied. It is worth mentioning that a negative error in VaR prediction 
indicates underestimation, while a positive one detects overestimation. 

It can be seen in the figure that the graphs are asymmetric, indicating that the 
relative size of the bias is more sensitive to VaR overestimation than it is to 
underestimation. Within a wide range of error in the VaR prediction, however, the 
relative size of the bias can be kept small. Indeed, between –30 per cent and 20 per 
cent VaR-prediction error, in all cases (except the normal distribution13) the relative 
size of the bias proves to be under 10 per cent.

10  See Acerbi − Székely (2017, 2019)
11  It is due to the non-negativity of the bias.
12  Please note that the former can be generated from the latter for the degree of freedom converging to 

infinity.
13  Even in this case it is only slightly higher than 10 per cent for VaR underestimation and around 12 per cent 

for its overestimation.
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Table 3
VaR, ES and the multiplier of the quadratic discrepancy for the standard normal and 
different Student’s t distributions
(α = 2.5 per cent)

Distribution VaRα ESα * Multiplier **

Student’s t (df = 2) –4.30 –8.40 0.22

Student’s t (df = 5) –2.57 –3.52 0.61

Student’s t (df = 20) –2.09 –2.97 1.00

Standard normal –1.96 –2.34 1.17

Note: * ES for t-distributions has been calculated based on the formula given by Zhang (2016). ** The 
multiplier is the term in (22) that is equal to f(−VaR)/2α.

It might be surprising at first glance that the bias proves to be stronger for 
distributions with thinner tails. This can be regarded as an additional “clever 
feature” of the proposed backtest and can be explained as a penalty for applying 
a model with a wrongly specified tail shape (see Acerbi – Székely (2019)).

The novelty of the most recent contribution of Acerbi – Székely (2019) is the 
introduction of the term “realised ES”. It can be formulated as

 ES!α = 1
T

vt +
1
α

xt +vt( )
t=1

T

∑ -  (23)

Figure 1
Relative size of the bias as a function of VaR prediction error for four different 
distributions
(α = 2.5 per cent)
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The possibility of its meaningful definition is due to the fact that the ES backtest 
is sharp. Indeed, the average z-score (the realised value of E[Z(e,v,X)] given by eq. 
(20)) can be written as the difference between the average predicted and realised 
value of ES

 zES et ,vt ,xt( ) = 1
T

et
1
T

vt + 1
xt +vt( )

t=1

T

t=1

T

-  (24)

The significance of this finding is that it makes it possible to compare the predicted 
(ex-ante) and realised (ex-post) value of ES, and eventually − in the wording of Acerbi 
– Székely (2019) − to perform “apples-with-apples comparisons”.

6. Summary and conclusions

This note attempts to draw attention to the existence of an effective backtesting 
methodology for ES. This risk measure has recently been adopted in the Basel 
regulation for determining the capital charge for trading book positions in internal 
models. While it can be regarded as a progress from the side of academics and 
financial experts, the adoption of ES seems to be contradictory in the sense that 
VaR has been kept for model-backtesting.

The non-elicitability of ES proved to be a big challenge. Furthermore, the formal 
definition of becktestability and revealing its connection to elicitability involves 
another challenge. In a recent breakthrough paper, it was pointed out by Acerbi − 
Székely (2017) that ES, the risk measure which already has a foothold in banking 
regulation, is not backtestable. In the same paper, however, the authors have 
shown the possibility for ES to admit a so-called ridge backtest which requires the 
prediction of VaR, which is elicitable, to be involved. It is built on the idea that ES is 
jointly elicitable with VaR shown by Fissler − Ziegel (2016). One appealing property 
of a ridge backtest is that it has limited sensitivity to the prediction of VaR and the 
direction of the bias is known. Furthermore, building on the concept of a sharp 
backtest, in the most recent contribution Acerbi – Székely (2019) have shown the 
possibility of introducing the notion of “realised ES” which can serve as an ex-post 
measure of tail risk.

These significant results pave the way for effective backtests of ES. Therefore, 
the methodology is ready to be applied and awaits the (re)actions of financial 
regulators. Promising progress in this respect is that the backtest of ES developed 
by Acerbi and Székely is currently under scrutiny by the risk team of the Bank of 
Italy, as it is being implemented to the central bank’s own portfolio. The feedback 
seems to be very positive so far (Cesa 2019). The initial recognition of the method 

zES et ,vt ,xt( ) = 1
T

et
1
T

vt + 1
xt +vt( )

t=1

T

t=1

T

-
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and growing interest in the results are also indicated by a recent podcast where 
Acerbi was interviewed14 on their proposed new methodology developed together 
with Székely.
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